SUMMARY of the sessions Novel Technical Advancements (Detector / Experiment) Jets and Novel Probes (Experiment)

Salvatore Fazio (Brookhaven National Lab)

EIC Users Meeting – Argonne National Lab 07-09 July, 2016

Forward Tagging as a Probe of Hadronic and Nuclear Dynamics

Deep Inelastic Scattering (DIS)

Proton Remnant:

- Di-quark/ tetra-quark color triplet
- Color octet
- The beam remnant fragmentation is as important as the 'current jet'
- Never before studied in detail

Diffractive Scattering (DDIS)

• ~10% of HERA DIS events

Rapidity Gap: $\Delta \eta \geq 2$

Deep Virtual Exclusive Scattering Transverse Spatial Imaging $vs. x_{Bi}$

- Detector Acceptance
 - eRHIC: new IR design: $0.18 \le p_T$
 - JLEIC: Far-Forward spectr. $0.0 \le p_T$ for $x_{Bi} > 0.003$

DIS and Many Body Nuclear Dynamics

- DIS at different x, Q² ranges probes particular configurations in the nucleus
- Forward tagging of spectator/recoil nucleons... to observe the dynamics of the active configurations.
- Illustrative Examples:

• x>1

~6-quark bags

• 0.2< x < 0.7

Nuclear Binding, Short Range Correlations

• $x \approx 0.1$

Anti-shadowing: Hard Core on NN Force

• x < 0.1

Coherent Diffraction: Multiple nucleons

• $x \ll 0.1$, $Q^2 \gg 1 \text{ GeV}^2$

Coherence → Saturation Transition

EIC physics program overview

Inclusive Reactions in ep/eA:

- Physics: Structure Functions: g_1 , F_2 , F_1
- → Very good scattered electron ID
- → High energy and angular resolution of e' (defines kinematics {x,Q²})

$\begin{array}{c|c} e \ (k_{\mu}) \\ \hline \\ P \ (p_{\mu}) \\ \end{array}$

Semi-inclusive Reactions in ep/eA:

- Physics: TMDs, Helicity PDFs, FFs (with flavor separation); di-hadron correlations; Kaon asymmetries, cross sections; etc
- \rightarrow Excellent hadron ID: $p^{\pm}, K^{\pm}, p^{\pm}$ separation over a wide $\{p, \eta\}$ range
- \rightarrow Full Φ-coverage around γ^* , wide p_t coverage (TMDs)
- → Excellent vertex resolution (Charm, Bottom separation)

Exclusive Reactions in ep/eA:

- Physics: DVCS, exclusive VM production (GPDs; parton imaging in b_T)
- → Exclusivity (large rapidity coverage; reconstruction of all particles in a given event)
- \rightarrow High resolution, wide coverage in $t \rightarrow$ Roman pots
- \rightarrow (eA): veto nucleus breakup, determine impact parameter of collision
 - → Sufficient acceptance for neutrons in ZDC

BeAST detector layout

 $-3.5 < \eta < 3.5$: Tracking & e/m Calorimetry (hermetic coverage)

BeAST Summary slide

- A flexible eRHIC detector configuration is put together
- It is based on either proven components or the ongoing R&D
- Present and next items on the ToDo list:
 - Decide on the PID detector configuration
 - PID algorithm development: either write parts from scratch or import from elsewhere (and then they better belong to a shared EIC software "pool")
 - Track finder algorithm for central rapidities (preferably within software consortium WPs, so portable between frameworks and generic enough)
 - Further optimization of various detector technologies to meet the detector requirements imposed by physics

Current JLEIC Concept

Acceptance for p' in DDIS

Particle Distribution

		E-endcap	Barrel	H-endcap
-	E'e	<8 GeV	8-50 <i>G</i> eV	>50 GeV
	Ejet	<10 GeV	~10-50 GeV	20-100 GeV
E	,hadrons	<10 GeV	<15 GeV	~15-50 <i>G</i> eV
occupancy		low	medium	high

Evolution of PHENIX into a Day-1 EIC Detector

- sPHENIX: Centered around BaBar superconducting solenoid (1.5T). Motivation: study of Quark Gluon Plasma in heavy-ion collisions via jet structure, heavy-flavor tagged jets, and Upsilon spectroscopy.
- fsPHENIX: addition of forward instrumentation (EMCal, Hcal, GEM trackers, Roman Pots?, to realize unique physics potential of polarized p+p, p+A, and A+A collisions.
- EIC Day-1 Detector: further evolution into an EIC detector. Add Crystal EMCal, and tracking in electron going, further add PID in barrel and hadron going, and additional tracking in hadron direction
- Takes advantages of significant investment in sPHENIX, and has coverage and resolutions to do essential Day-1 EIC physics.

Beam Test Preliminary results

- Simulation shows good agreement with early data results
- Expect to achieve required resolution of 12%/\(\)E

Tracking Updates

PHYSICS WITH JETS AT EIC

- 1) Jets evolution and dynamics
 - √ radiation/hadronization mechanism.
 - √ formation of a jet
 - √ reconstruction algorithms
- 2) Jets as a probe of partonic initial state
 - \checkmark gluons (at high x), quarks/anti-quarks

- 3) Jets in medium
 - ✓ energy loss, quenching
 - √ broadening
 - ✓ multiple-scattering.

JETS AT EIC

Jet approximates a parton

Struck quark energy Fh ~1-100 GeV

At EIC for the first time - will be able to study in-medium propagation and hadronization of heavy quarks (charm and beauty)

Yulia Furletova

OTHER JETS

AT EIC

Remnant -jet

 $k=(E_e, \overrightarrow{p}_e)$

 $P=(E_p, \overrightarrow{p}_p)$

Diffractive -jet

Photon remnant

Gluon pdf (HERA)

Strong coupling (HERA)

Charged current DIS

Particle p_T Fractions Vs Jet p_T

Fraction of Jet Pt Carried by Different Particle Classes: Breit

- Take vector sum of particles of given type and find total transverse momentum
- Plot average p_T of each particle class vs total jet p_T
- See that charged particles dominate while neutral hadrons contribute roughly 10%

Jet p_T Spectra With Rapidity Cut

- Plot jet p_T after all cuts
- See reasonable enhancement of gluon jets over p_⊤ range
- Should be able to get relatively pure quark sample and enhanced gluon sample for applications which require identification

Di-jet Invariant Mass

Dijet Invariant Mass: Q2 = 0.1-1.0 GeV^2

Dijet Invariant Mass: Q2 = 1-10 GeV^2

Dijet Invariant Mass: Q2 = 0.01-0.1 GeV^2

See that the cut on X_{γ} significantly reduces the resolved contribution while maintaining the direct events

Separation between resolved and direct is most prominent at high Q² and low di-jet invariant mass

Further suppression of resolved events may be possible by looking at lab-frame rapidity correlations

Di-jet Yield in X and Q²: 1fb⁻¹

Dijet Yield Vs X_Bjorken (X_Gamma > 0.7): 1fb^-1

- Yield of di-jet events which pass X_{γ} cuts vs x_{B} for the four Q^{2} bins simulated
- Yield has been scaled to an integrated luminosity of 1fb⁻¹
- See multiple decades of Q² coverage for several x_B bins
- Different x_B ranges can be accessed at a given Q² by varying the collision energy
- Study is in early stage but outlook is positive – can isolate direct contribution even at low Q²

 There are two types of processes which can produce di-jet through hard scattering: direct and resolved process.

• Only in resolved process, the photon has a structure. Then we can separate theses two types of processes at EIC by reconstructing x_{γ}

- Photon PDFs can be extracted by measuring dijet cross section in photoproduction events.
- We can reproduce the HERA data by using EIC simulation to measure dijet cross section in photoproduction events (seen the figure on right), which indicates our EIC simulation is reliable.

$$(E_{T}^{jets})^{2} [GeV^{2}]$$

Di-jet cross section measured at EIC

 The simulation shows the capability to measure the cross section for di-jet production, with high accuracy in a wide kinematic range at EIC and extract the photon PDFs from a global fit.

Distinguish the mechanisms of rho broadening

Possible to distinguish between models (blue and red curves) after upgrade (red errors)

Knowing the mechanism that causes in-medium rho broadening and its temperature and baryon-density dependence is fundamental to our understanding and assessment of chiral symmetry restoration in hot QCD matter!

Turn off hot medium effect: electron-positron pair at the EIC? Understanding the rho modifications in cold nuclear matter (e+A versus e+p) is fundamental! 24

J/ψ yield :t=p_T² and centrality dependence

Slope parameter consistent with the size of the Au nucleus. Interference structure observed. Coherent photon-nucleus interactions?

No significant centrality dependence of the excess yield! Interplay between photon flux cancellation in the overlapped area and the distance of the spectators of the two nuclei?

Coherent photonuclear and two-photon processes

Studied extensively in ultra-peripheral collisions

How is the J/ ψ from coherent photonuclear process affected by hot and cold QCD matter! Why do we still be able to observe these J/ ψ s?

A new tool to study enriched multi-body dynamics on the strong QCD force!

EIC serves as an ideal factory to study the cold QCD matter effect.

Study the very low p_T J/ ψ production as a function of p_T^2 , multiplicity, and system size dependences (by varying nucleus type) in e+A collisions and also compare the measurements in e+A to those in e+p one (R_{eA}). Is it feasible?

Electroweak physics at the EIC

parity violating asymmetries are associated with a new series of structure functions

EIC offers new opportunities to access new structure functions and measure weak mixing angle at high Q²

With parity violation and $Q^2 \ll Z^2$

pol. electron & unpol. nucleon:

$$A_{beam} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A^e \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V^e \frac{Y_-}{2Y_+} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right] = F_3^{n, \gamma Z} = \frac{2}{3} (d_V + s - \bar{s}) + \frac{1}{3} (u_V + s - \bar{s})$$

unpol. electron & pol. nucleon:

$$A_{L} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \left[g_{V}^{e} \frac{g_{5}^{\gamma Z}}{F_{1}^{\gamma}} + g_{A}^{e} \frac{Y_{-}}{Y_{+}} \frac{g_{1}^{\gamma Z}}{F_{1}^{\gamma}}\right]$$

$$F_{1}^{p, \gamma Z} \approx \frac{1}{9}(u + \bar{u} + d + \bar{d} + s + \bar{s} + c + \bar{c})$$

$$F_{1}^{n, \gamma Z} \approx \frac{1}{9}(u + \bar{u} + d + \bar{d} + s + \bar{s} + c + \bar{c})$$

$$F_{3}^{p, \gamma Z} = \frac{2}{3}(u_{V} + c - \bar{c}) + \frac{1}{3}(d_{V} + s - \bar{s})$$

$$F_{3}^{n, \gamma Z} = \frac{2}{3}(d_{V} + s - \bar{s}) + \frac{1}{3}(u_{V} + c - \bar{c})$$

$$g_{1}^{p, \gamma Z} \approx \frac{1}{9}(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} + \Delta c + \Delta \bar{c})$$

$$g_{1}^{n, \gamma Z} \approx \frac{1}{9}(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} + \Delta c + \Delta \bar{c})$$

$$g_{5}^{p, \gamma Z} = \frac{1}{3}(\Delta u_{V} + \Delta c - \Delta \bar{c}) + \frac{1}{6}(\Delta d_{V} + \Delta s - \Delta \bar{s})$$

 $g_5^{n, \gamma Z} = \frac{1}{3}(\Delta d_V + \Delta s - \Delta \bar{s}) + \frac{1}{6}(\Delta u_V + \Delta c - \Delta \bar{c})$

Structure functions study with e-p collisions

Weak mixing angle study with e-D collisions

